含有3列信息,第一列对应名称(基因/蛋白/代谢物/微生物等),若包含重复,请去重。第二列表示第一个组学的表达量,第三列表示第二个组学的表达量。
图中的每个点表示分别在X轴和Y轴的数值分布,通过线性回归可以来衡量两组学数据的线性关系。还可以计算两组数据的(Pearson,Spearman和 Kendall)相关性,结果保存在Scatter_plot.txt中。另外,线两边的浅灰色阴影代表置信区间。
图中的每个点表示分别在X轴和Y轴的数值分布。可以计算两组数据的(Pearson,Spearman和 Kendall)相关性,结果保存在Scatter_plot.txt中。
通过计算两组学数据的(Pearson,Spearman和 Kendall)相关性可以得到相关性系数R2和P值,P值小于0.05的情况下,R2值越大,相关性越高。